If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-40x-27=0
a = 25; b = -40; c = -27;
Δ = b2-4ac
Δ = -402-4·25·(-27)
Δ = 4300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4300}=\sqrt{100*43}=\sqrt{100}*\sqrt{43}=10\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{43}}{2*25}=\frac{40-10\sqrt{43}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{43}}{2*25}=\frac{40+10\sqrt{43}}{50} $
| 4(6x+1=24x+4 | | 0.11x+3.97=0.07x+3.85 | | 0.10(y-8)+0.08y=0.16y-0.03(20) | | 5(2l−5)+3l=1 | | .7x-3.5=-1.4 | | ((2x-5)/7)+x=3 | | x+0.13x=400 | | x-0.13x=400 | | 2x+5×=146 | | x+0.83x=400 | | (2x+20)^2=100 | | 10k−10k=0 | | -3v-5=15 | | (2y-13)=18-(y+4) | | -3u-(-7)=16 | | t÷9+5=50 | | 5r^2-24=0 | | −2/5t+6=14 | | 3x-(-4)=-11 | | (4x+1)(3x+1)=13 | | -5/7+w=5/7 | | -5/3+w=5/7 | | 10x^2+25x-260=0 | | 10x^2+25x=260 | | 3.5+7(1+7.5h)=16.5 | | 10x/27+7x/24=146 | | 113-(6x+7)=6(x+9)+x | | 54-3x-7=3x+12+x | | 0.16x=0.488 | | 5(-1+x)=6x-1/5 | | 42=x+2 | | 3^x-17=23 |